От имитации кожи до человекоподобных роботов: как работает органическая электроника

Что такое органическая электроника?

Это отрасль электроники, которая использует органические материалы для изготовления схем и других электронных устройств, по большей части располагая рядом преимуществ перед традиционными неорганическими материалами, с которыми все знакомы. Это довольно новая область, но ее возможности безграничны, а результаты впечатляют уже сейчас.


Традиционная электроника основана на твердом кремнии, который используется для создания полупроводников. Они неорганические (то есть не содержат углерода). Напротив, в органической электронике используются молекулы на основе углерода — либо небольшие молекулы, либо полимеры, которые представляют собой длинные цепочки молекул. Почти все биологические молекулы являются органическими соединениями, но также и вещества, полученные из углеводородов, таких как нефтехимия, масла и пластмассы. Многие люди могут подумать о полимерах в частности как о непроводящих — например, пластиковые полимеры используются для изоляции медных проводов. Но некоторые органические полимеры и молекулы могут проводить электричество.

Чем они отличаются от традиционной электроники на основе кремния?

Органические соединения имеют некоторые преимущества перед неорганическими соединениями. Они легкие, могут быть гибкими и прозрачными — все это существенно отличается от классической кремниевой технологии. Их производство также может быть дешевле.

Почему органическая электроника вызывает столько ажиотажа?

Существует так много органических соединений и большое разнообразие функциональных групп (кластеры атомов со своими отличительными свойствами). Их электронные свойства становится очень легко настроить, добавляя функциональные группы. Некоторые функциональные группы отводят электроны, а некоторые — отдают электроны, поэтому, комбинируя их, ученые могут очень точно настроить необходимые свойства. Например, можно настроить флуоресценцию для светоизлучающих диодов. 

Как появился новый вид электроники?

Органическая электроника появилась в 1950-х годах, когда Х. Инокучи и его коллеги открыли первую проводящую органическую молекулу. Из этого открытия было установлено, что органические молекулы могут быть полупроводниками — термин, который обычно использовался для кремния, германия и других подобных элементов. Оказывается, органические полупроводники имеют ряд преимуществ перед традиционными полупроводниками.

Органические полупроводники

В. Хельфрих и В. Г. Шнайдер, в свою очередь, обнаружили, что органические молекулы могут излучать свет. Впервые такое свойство было обнаружено в молекуле антрацена. Единственным недостатком было то, что для этого эффекта требовалось высокое напряжение, что делало открытие и возможные в дальнейшем разработки крайне неэффективными. Затем в 1980-х годах трое ученых — Хигер, Мак-Диармид и Сиракава — сделали проводящие полимеры, за что получили Нобелевскую премию по химии в 2000 году. Несколько лет спустя было обнаружено, что перилентетракарбоновый диангидрид — PTCDA, молекула органического красителя, который все еще используется в автомобильных красках, обладает полупроводниковыми свойствами.

Следующей важной вехой стало открытие органических светоизлучающих диодов — OLED — полупроводниковых приборов, изготовленных из органических соединений, эффективно излучающих свет при прохождении через них электрического тока. Это устройство было изобретено в 1987 году Чинг Тангом и Стивеном Ван Слайком из компании Kodak. Устройство могло излучать свет с напряжением всего 5 вольт и оно навсегда изменило индустрию дисплеев.


Где такая электроника используется сейчас и какое ее будущее?

По словам профессора Андреаса Хирша, заведующего кафедрой органической химии в Университете Фридриха-Александра в Эрлангене-Нюрнберге в Германии, электроника, сделанная из углерода, а не из кремния, может привести к созданию нового поколения медицинских устройств, датчиков и, возможно, даже роботов.

«Вероятно, большинство людей будут использовать экранные технологии. Органические светодиоды (OLED) сейчас довольно распространены в мобильных телефонах, и вы также можете покупать с ними телевизоры. Но даже до этого жидкокристаллические устройства (ЖК-дисплеи), которые можно рассматривать как разновидность органической электроники, годами использовались во многих приложениях», — объясняет Хирш в интервью для Ричарда Грея, Horizon.

«Я убежден, что лет через 50 или около того вы увидите гораздо больше роботов, выглядящих органично, они смогут выполнять функции, которые не могут выполнять роботы на основе металла», — заявляет ученый.

Спектр применений органической электроники

Органическая электроника имеет широкий спектр применений. Четыре их них можно назвать наиболее перспективными: дисплеи, фотоэлектрические и транзисторные технологии и биомедицина.

 Дисплеи

OLED (органические светоизлучающие диоды) — это новаторская технология, разработанная Чинг Тангом и Стивеном Ван Слайком. OLED-светодиоды состоят из органической пленки, которая использует свойство фосфоресценции для генерирования собственного света вместо использования подсветки. Фосфоресценция — это излучение из-за возбуждения электронов, которое длится в течение длительного периода времени. Вы могли заметить это в наручных часах и циферблатах, которые светятся в темноте. 

Фосфоресценция — это особый тип фотолюминесценции. В отличие от флуоресцентного, фосфоресцентное вещество излучает поглощенную энергию не сразу. Большее время реэмиссии связано с «запрещенными» энергетическими переходами в квантовой механике.

Работа OLED довольно проста. Органическая пленка состоит из двух слоев: излучающего и проводящего. На границе между двумя слоями имеются отверстия. Излучающий слой испускает электроны, и рекомбинация электронов и дырок приводит к генерации фотонов, которые составляют свет.


В основном есть два типа OLED — с пассивной и активной матрицей.

  • У пассивно-матричный OLED (PMOLED) есть полосы катода и полосы анода, они расположены перпендикулярно друг другу. Пересечения и образуют пиксели, из которых излучается свет. Внешние цепи подают ток на выбранные полосы анода и катода, определяя, какие пиксели будут включены, а какие останутся выключенными. Яркость зависит от величины приложенного тока. Их недостатком является то, что они потребляют много энергии и поэтому используются в маленьких экранах, таких как КПК (Personal Digital Assistant) и MP3-плееры.
  • Второй тип OLED — это OLED с активной матрицей (AMOLED). AMOLED также имеют полные слои катода, органического материала и анода, но анодный слой перекрывает матрицу матрицы тонкопленочных транзисторов (TFT). Массив TFT — это схема, которая определяет, какие пиксели включаются для формирования изображения.

AMOLED потребляют гораздо меньше энергии, чем PMOLED, поскольку массив TFT требует меньше энергии, чем внешние схемы. В результате они подходят для больших дисплеев, таких как компьютерные мониторы, телевизоры и электронные рекламные щиты.

В свою очередь у OLED-светодиодов множество преимуществ перед ЖК-дисплеями (жидкокристаллическими дисплеями). Традиционные ЖК-дисплеи состоят из множества частей. Жидкие кристаллы не имеют собственной подсветки, поэтому они используют подсветку. Кроме того, конструкции дисплея есть листы отражателя для улучшения яркости, листы диффузора для разделения и равномерного распределения света, нижний поляризатор и верхний поляризатор, цветной фильтр для создания цветного света и, конечно же, жидкие кристаллы, которые являются ключевыми элементами. Это резко увеличивает толщину экрана.

Квантовые светоизлучающие диоды (QLED) — другое направление. Они содержат поляризаторы и цветные фильтры. Им также нужна подсветка, поскольку квантовые точки не могут излучать собственный свет. В результате эти дисплеи становятся слишком толстыми. OLED-светодиоды изящные, производят больше абсолютного черного, чем QLED, и лучше работают при тусклом свете, поскольку каждый пиксель освещается индивидуально. OLED-экраны могут быть очень тонкими. И все же большинство компаний и потребителей выбирают OLED-дисплеи для своих смартфонов. 

 Фотоэлектрические приложения

Органические фотоэлектрические устройства — это в основном органические солнечные элементы. В качестве фотоэлектрического материала обычно используются полимеры. Одним из основных преимуществ использования органических материалов для производства солнечных элементов является то, что «коэффициент оптического поглощения» органических молекул высок, поэтому большое количество света может быть поглощено небольшим количеством материала, обычно порядка сотен нанометров. Кроме того, они очень гибкие и намного тоньше своих кремниевых аналогов. В то время как нынешняя технология OPV (Organic Photovoltaic) может похвастать эффективностью преобразования, которая превышает 10%, достигая даже 12%, некоторые исследователи предсказывают, что органические солнечные элементы достигнут эффективности 15–20%. Их также можно скатывать и даже компостировать.


И, хотя мы живем во все более электронном мире, доступ к этому миру ограничен. По оценкам, 1,3 миллиарда человек не имеют доступа к электричеству, при этом многие люди полагаются на керосин, батареи или дизельные генераторы. Из-за более дешевых производственных затрат органическая электроника обещает не только изменить способ использования людьми технологий, но и расширить их использование для населения, не имеющего доступа к электросети.

Основным недостатком органических фотоэлектрических элементов является низкая эффективность по сравнению с неорганическими фотоэлектрическими элементами, такими как кремниевые солнечные элементы. Но для решения этой проблемы проводятся исследования, и каждый день открываются новые материалы, которые могут произвести революцию в отрасли солнечной энергетики.

Гибкие печатные органические транзисторы

Транзисторы — это фундаментальные строительные блоки современных электронных устройств, которые либо усиливают сигналы, либо работают как переключатели. Органический полевой транзистор (OFET) — это полевой транзистор, который содержит проводящие электроды, органический полупроводник и диэлектрик. Его особенность в том, что он использует очень мало энергии для патрулирования очень большого тока, а также действует как хороший переключатель. Такие транзисторы производятся печатными схемами с использованием органических красителей на гибкой основе. Особое внимание уделяется тому, чтобы никакие загрязнения не попали в материал, так как это может отрицательно повлиять на проводимость материала.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND